M-ULTIPROCESSTING

APPLYING DATA
FLOW IN THE
REAL WORLD

BY WILLIAM GERHARD PASEMAN

This model for parallel processing is finding its way
into commercial applications

VON NEUMANN MACHINES support
a paradigm, a way of thought. that has
been used successfully for 35 years.
(See the text box entitled “The Von
Neumann Paradigm” on page 214.) In
a world in which thousands of PCs are
sold in a month, the von Neumann
computational model is not going to
be replaced by an alternate model
any time soon. However, valid reasons
exist for using architectures based on
alternatives to the von Neumann
model of computation.

One reason is that many algorithms
perform better and more inexpensive-
ly on other architectures than on von
Neumann machines. It is not simply
raw horsepower that produces this
performance increase; it is horse-
power that is tailored to the opera-
tions that the algorithm uses. Algo-
rithms that can be expressed easily
and coherently using the set of opera-
tions that the architecture provides
usually perform better than those that
cannot.

When algorithms and architectures
mesh well together, we say that the
architecture supports the algorithm.
When an architecture makes imple-

mentation of the algorithm feasible,
but not convenient, we say that the ar-
chitecture weakly supports the algo-
rithm. The better the mesh between
the two, the better the price/perfor-
mance ratio of the combination will
be

The von Neumann paradigm sup-
ports many algorithms well and weak-
ly supports others. In this article. we
will briefly review the relationship be-
tween several non—von Neumann par-
adigms then examine one non-von
Neumann paradigm, data flow. in
detail. Finally, we will look at some
commercial architectures that support
this model.

WHY WE SHOULD CARE

ABOUT PARALLELISM

There are many ways to decrease the
time an algorithm takes to complete
on a given processor. If the processor
is a general-purpose computer. one
good way is to put the part of the
algorithm that takes the most time
into hardware. This is called functional
specialization. An example of this is the
Z80 IX 1Y register instruction set. The
instructions in this group were added

to support procedure parameter pass-
ing.

Another method of speeding things
up is to break the algorithm into parts
and devote a separate processor to
each part. This type of parallelism is
called functional decomposition. It works
well only if the processors have the
work divided evenly among them. If
the work is not divided evenly. one
processor will become a bottleneck.

Finally, you can break the algo-
rithm’s input data into parts and have
a set of identical processors handle
each part. This type of parallelism will
not work on all algorithms.

Of course. all these methods poten-
tially can be used at the same time.
Functional specialization usually pro-
vides the greatest speedup; however,
that speedup usually is very special-
ized. Parallelism provides less speed-
up. but it is applicable to a broader
range of problems.

Computer architectures that effec-
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William Gerhard Paseman is a software
manager at Daisy Systems. He can be reached
at 330 Sierra Vista, Apt. #3. Mountain
View, CA 94043.

MAY 1985 « BYTE 201



APPLYING DATA FLOW

tively use processor parallelism
possess linear price/performance
curves over a wide performance
range. For example, if a given algo-
rithm takes 4 minutes to complete
with S1000 worth of fifth-generation
hardware. then it should take 2
minutes to complete with $2000
worth of hardware and | minute to
complete with $S4000 worth of hard-
ware. (See the text box entitled
“Linear Price/Performance and In-
cremental Performance.” page 212).

Conventional (von Neumann) com-
puter architectures do not have linear
price/performance curves over a wide
performance range. In order to make
a conventional computer perform
general algorithms faster. you don't
simply add more components. In-
stead. you make its individual com-
ponents faster. (There are some
special cases in which you can im-
prove performance by adding com-
ponents; for example. adding more
memory to a demand-paging environ-
ment.) Another way of saying this is
that von Neumann architectures are

not designed to be scaled over a wide
range with respect to performance.

The price/performance relationship
between the two approaches is illus-
trated in figure 1. The graph indicates
that von Neumann computer architec-
tures will experience a performance
cutoff at some point. This point will
occur when all the components reach
the theoretical performance limit of
the technology upon which they are
based.

Parallel architectures will also ex-
perience a performace cutoff at some
point. This point will occur when the
cost of coordinating two pieces of
work between two components ex-
ceeds the cost of having one compo-
nent do both pieces of work. In the
general case, this point must eventual-
ly occur regardless of the size or
speed of the components. regardless
of the speed of communication. and
regardless of the complexity of the
work that the components must do.

Until they reach the von Neumann
cutoff, von Neumann machines prob-
ably will perform better than their
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Figure 1: A comparison of the price/performance aspects of serial and paraliel

computing architectures.
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parallel counterparts. This is because
parallel architectures usually have a
communication overhead that von
Neumann architectures lack.

MODELS OF COMPUTATION

THAT SUPPORT PARALLELISM
There are several paradigms for which
it is currently popular to design paral-
lel machines. The oldest is the control-
flow paradigm.

The control-flow paradigm assumes
that two or more processors share
common memory. A control-flow ar-
chitect usually views algorithmic
parallelization and processor syn-
chronization as being the program-
mer’s problem. The architect supports
the programmer by providing ma-
chine instructions that allow the pro-
grammer to do explicit processor syn-
chronization in his code. Due to the
wide interface between processes (ie.
the common memory). it is easy to
write poor code that uses the inter-
face in an undisciplined way. As a
result. such systems have gotten bad
press from many in the research
community.

Most of the other paradigms are
based around a weaker. more theo-
retically tractable concept in which,
conceptually. memory sharing is not
required. This concept is called
message passing Message-passing
architectures allow programmers to
structure their programs into islands
of computation. These islands pro-
cess asynchronously and communi-
cate by passing messages to one
another.

The data-flow paradigm is a mes-
sage-passing model in which each
island of computation is very small
and usually performs the same opera-
tion repetitively on streams of values.
Data-flow computation is data-driven.
which means that each island starts
processing whenever all data neces-
sary to its computation is available

The reduction paradigm is similar to
the data-flow paradigm. except that a
strong separation is made between
the spawning of a computation and
the computation itself. Here. com-
putation is demand-driven. which

\comtinued)
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means that the requirement for a
result triggers the island that will
generate it

THE DATA-FLOW PARADIGM

The basic concepts of data flow were
originally developed in the 1960s by
compiler writers. Compiler writers
used data-flow graphs to do perfor-
mance optimization on standard
serial programs. A data-flow graph is
a directed graph in which the nodes
represent primitive functions such as
addition and subtraction. and the arcs
represent data dependencies be-
tween functions. It was realized in the
early 1970s that if data-flow graphs
were executed directly, the architec-
tures that executed them could be

massively parallel.

A picture of a data-flow graph for
the function 3 « (y + F(x)) is shown
in figure 2. In this model. nodes are
viewed as stations in an assembly line,
The stations are connected by con-
veyor belts (called arcs). The conveyor
belts carry containers (tokens) that
hold contents (values). At each node
is a person (processor) who operates
the station's function. When the first
token hits the F node. the processor
takes its value. operates on it. and
passes a new token with the result 1o
the + node. As F was processing the
first value, + could do nothing. since
it required two tokens in order to
operate and had only one available.
Now, however, + has two values: |
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Figure 2: A simple data-flow graph of the function 7 = 3 = [y = F(x)).
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Figure 3: A data-flow graph of the function 2 = 3 » (y + Flx)) illustrating
static processor allocation; processors are assigned lo nodes al compile time.
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from F and 9 from y. so it adds them
together and passes a token with the
result to =. As + was operating on its
first set of tokens. F was operating on
its second token. Thus, parallel opera-
tion is achieved by pipelining values
through nodes that execute fixed
functions.

DATA-FLOW EXECUTION MODELS
Normally. a data-flow graph has many
more nodes than processors. There-
fore. an execution model, a method
of allocationg nodes to processors, is
needed. We will briefly describe two
models, the static and dynamic
models of execution.

Figure 3 depicts the static model. in
which the processors run to the
nodes, where all input tokens are
present and no tokens are on the out-
put arcs.

However, this method leads to
situations like that mentioned above,
where the + node was bottlenecked
by the F operation. In order to rec-
tify this protlem, the dynamic model
was invented. In the dynamic model,
instead of waiting idle. the processor
at the + node would help the F pro-
cessor by processing its second token
for it. Figure 4 depicts the dynamic
model.

DATA-FLOW ARCHITECTURE

It is still unclear exactly how to con-
struct expandable hardware to sup-
port any of the above execution
models.

One common data-flow architecture
is shown in figure 5. Here, the data-
flow machine consists of three
stages—a matching unit. a fetch/up-
date unit, and a processing unit
{perhaps more than one|. Let's see
how these parts interact on the
previous example. Let's refer to the
nodes by symbolic name. We will call
the + node PLUS and the « node
MUL. At some point in the calcula-
tion, the matching unit has two tokens
passed to it by the processing units.
The first token indicates that the left
(L) arc of the PLUS node has been set
to 10 (a). Later. it receives a token in-
dicating that the right (R) arc of the

[continued)
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PLUS node has been setto 7 (b). The
match unit knows that PLUS has only
two inputs, so at this point it sends
a token set to the fetch/update unit
for processing (c). The fetch/update
unit knows that PLUS performs the +
function and that it fans out to MUL's
arc L, so it sends this information to
an arbitrary processing unit (d). The

processing unit performs the addition
and sends the result to the match unit
(el

If the system allows more than one
instantiation of an instruction to be
active at a time (this would cccur if
the machine were executing the same
instruction for the i and i+ | instantia-
tions of a loop simultaneously). then
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Figure 4: A data-flow araph of the function = = 3 + (u + Fix) illustrating
dynamic processor aliocation. processors are assigned to wodes at run time.
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the descriptors must also be tagged
with a process ID. This is done in a
dynamic data-flow system.

PROPERTIES OF THE

DATA-FLOW PARADIGM

The data-flow model makes many
assumptions about the nature of the
algorithms it runs. Some are:

e All information needed to execute
the algorithm must be contained in its
data-flow graph. That is. the paradigm
does not use any structures other
than the data-flow graph in order to
execute the algorithm that the graph
represents. The graph is the data-flow
machine’'s “machine language” for
the algorithm. The machine takes ad-
vantage of the graphical nature of the
program in order to produce the
speedup.

® The algorithm should not have a
single locus of control. That is, the
data-flow graph should allow more
than one node on the graph to be ex-
ecuted at a time. If the algorithm has
a single locus of control. it will run
slower on a data-flow machine than
on a von Neumann machine (due to
the communications overhead).

® The data-flow graph must have a
high degree of granularity. In other
words, the graph nodes must contain
things like + primitives and not “'sort”
primitives. One reason this is impor-
tant is that graphs with granular
primitives contain the potential for
more parallelism. Note that this im-
plies that the time for a "context
switch.”* which is the time for a pro-
cessor to switch from processing one
node to processing another, must be
small.

® The dataflow graph must have
locality of effect. This means that the
nodes do not’ fan out to a large
number of other nodes. This is impor-
tant, since nonlocality would stress
the communication network of the
data-flow machine.

These assumptions can be used to
judge whether or not an algorithm
matches well with the data-flow
paradigm. If the algorithm to be ex-
ecuted does not have the above

(continued)
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properties. then the data-flow mode!
IS not the one to use to execute it.

COMMERCIAL POSSIBILITIES
OF DATA FLOW—
TEXAS INSTRUMENTS
Texas Instruments was one of the first
companies to investigate the viability
of data flow all the way to the hard-
ware prototype stage. TI's research
was done between 1975 and 1980
The company's architecture consisted
of four “simple processors” and a
host. connected in a ring architecture.
TI has not yet released a commercial
product based on this research

TI's hardwarelsoftware effort was
called a Data Flow Testbed. The test-
bed could accept a program written
in a conventional programming lan-

| guage. compile it, link it. and automat-

ically partition it to run on any
number of processors. The people at
TI did this in a relatively straightfor-
ward way. They took an existing com-
mercial compiler/linker that generated
data-flow graphs in its optimization
phase If the resulting graph com-
pletely described the algorithm. they
could automatically partition the
graph onto a number of processors
and run it.

Tl recognized that it is currently
very difficult (ie. commercially im-
practical)l to generate data-depen-
dence graphs for most real programs
written in standard languages. The
company knew this meant that “pure
data-flow processors cannot run stan-
dard software. Therefore, Tl's system
used a mixture of data-flow and clas-
sical control-flow techniques. That is.
the computer was not a “pure” data-
flow machine but rather used data-
flow constructs where appropriate.

TI's primary interest was the applica-
tion of data-flow concepts to large-
scale machines running standard (un-
modified) high-level language pro-
grams. The company investigated
whether compilers could extract
enough of the latent parallelism in

. standard programs to produce signifi-
| cant speedup in a data-flow architec-

ture. One of TlI's most interesting
results was that the average amount
(continued)
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NEC's chip is
oriented toward
Image processing.

of parallelism available in standard
FORTRAN programs was between 5
and 20. This meant that the maximum
theoretical speedup Tl could achieve
lusing “off the shelf” hardware) in
these cases was 5 tc 20 times
flow can take advantage of parallelism
only where it exists. If the program-
mer writes an algorithm so that no
parallelism can be extracted from it
then a data-flow version of the algo-
rithm will run no faster than a vor
Neumann version of the algorithm

using high-performance
hardware in a von Neumann machine
affords a much greater speedup

™
Uala

NIPPON ELECTRIC CORPORATION
Of the three companies discussed
here, NEC's approach comes closest
to the pure data-flow paradigm The
company’s approach is tased on
single chip that can contain up to 6

N

nodes and 128 arcs. Systems can in-
corperate up to 14 of these chips by
connecting them into a ring in a very
straightforward way. (It is possible to
extend the limit beyond 14 chips. but
the arrangement IS much more com-
plex.) A complete standard system
then. could run up to 896 two-input
nodes distributed across 14 pro-
Cessors.

NEC's chip is oriented toward image
processing. In the companys own
words. “Because the majority of ap-
plication programs for image process-
ing execute iterative operations for
large volumes of data. image-process-
ing programs are relatively small com-
pared to general data-processing pro-
grams. Although NEC's machine has
a relatively small number of arcs and
nodes in its system, each node can ex-
ecute a high-performance operation

NEC's initial focus is not on running
existing high-level language programs
but rather on running small. easy-to-
rewrite programs that require high
performance. That is not to say that
NEC does not address these issues;
rather, that the company s first enter-
ing the market where data flow's

continued)

LINEAR
PRICE/PERFORMANCE AND
INCREMENTAL PERFORMANCE

Suppase a salesman sells you a
processor for $1000 and tells you
that it will run your favorite program
in just eight hours. He then tells you
that due to the marvels of fifth
generation computing technology. you
can bolt in another processcr for
another $1000 and your program will
run twice as fast. It will now take only
four hours to complete. You happily
buy two processors. Still, four hours is
a long time, so you call your salesman
and tell him that you want to halve the
time 10 two hours. The salesman now
one but two more pro
cessors in order to co this. You realize

sells you not

that for each processor you buy, you
incrementally increase performance by
(P+1)VP. For one processor. this is
(1+ 1)1 = 2x, or a 100 percen! speed-
up. For two processors, this is
(1 +2)2 =1.5x. or a 50 percent speed-
up. For three processors, this is
(1 +3)/3 = 133x. or a 33 percent
speedup

This is an extremely attractive situa-
tion for the salesman. of course, since
he gets an order of magnitude increase
in COMMISSIONS every time you want to
get an order of magnitude increase in
performance. It is, of course, not a very
good situation for you.
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benefits are the strongest. In fact. NEC
IS nOw working on an integrated sys-
tem in which to embed its chips. How
the company approaches system-leve!
problems (language definition. trans-
lation. and debugging) remains to be
seen.

In summary. NEC was able to use
the data-flow model by applying it to
a domain in which

® The algorithms are easily expressed
in terms of a data-flow graph.

® The zlgorithms contain a great deal
of inherent parallelism.

® The architecture can run small easy-
to-program algorithms.

® There is a great need for fast execu-
tion. (Image processing is computer-
bound )

DAISY SYSTEMS CORPORATION
Daisy Systems started selling a com-
mercial data-flow architecture in the
first quarter of 1984 The company’'s
approach is based on a set of board-
level processors connected in a ring
The basic configuration consists of
three or four processing units plus a
host processor. The units are capable
of processing 65.000 to 1.000.000
nodes. depending on the level of
modeling. Each node can have up to
256 inputs.

Daisy Systems data-flow architec-
ture is the first to respond to the
customer's need for high-speed
discrete logic simulation. In essence.
a discrete logic simulator runs an
algorithmic description of a piece of
hardware. By their very nature. these
algorithms are expressed in terms of
graphs in which each node is a sim-
ple operation

The hardware designer of these al-
gorithms consciously works to make
his design exhibit a high degree of
parallelism. Therefore. Daisy did not
have to worry about the algorithm

running out of parallelism” of which

to take advantage. Even better. the
parallelism is very great at the
machine-instruction level.

Like TI. Daisy recognized that the

pure” data-flow paradigm did not
completely address all of simulation’s
problems satisfactorily. For example.
the “pure’ data-flow model has no
way of handling stored state (side ef-
fects). Daisy addressed this and other
similar problems by extending the
paradigm.

At the programming level. Daisy
recognized that the programming task
in advanced architectures is difficult
and error-prone In many approaches,
the user must adapt to a paradigm
that is unfamiliar. unintuitive. and dif-

|

THE VON NEUMANN
PARADIGM

M athematicians have been pro-
posing computational para-
digms. or “models of computation.
since the time of Charles Babbage
(witness Turing machines Makov pro-
ductions. and Church's Lambda
| calculus). However. the most well
' known paradigm was pioneered by
john von Neumann. Von Neumann's
| mode! is based on the concept of a
single central processing unit that ac-
cesses a linear amray of fixed-size
\ memory cells These cells can contain
either instructions or data. Instructions
are relatively low-level They perform
| simple operations on elementary

1

operands In the von Neumann model.
program control is sequential and cen-
tralized It is upon this paradigm that
most commercial computer architec-
tures are based

Strictly speaking. a non-von
Neumann paradigm is one that departs
from any of these concepts. For exam-
ple a machine that keeps its data and
memory in two separate banks is not
a von Neumann machine Recently.
however. “non—von Neumann~ has
come to mean a paradigm that differs |
primarily in the last of the above prop- |

erties. that of sequential centralized
program control
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Daisy Systems’
data-flow architecture
is the first to respond
to the customer's need
for high-speed discrete
logic simulation.

ficult to use Daisy overcame this
problem by allowing users to commu-
nicate in the languages that they have
always used: graphics. Boolean ex-
pressions. and a standard behavioral
language Daisy was able to do this
well because the primitives that the
designer uses map easily to the
primitives that Daisy's architecture
supports. The mapping process (com-
pilation. linking. and code generation)
is totally automatic.

Daisy was able to use data flow by
applying it to a domain in which

® The algorithms are naturally ex-
pressed in terms of a data-flow-like
graph.

® The algorithms contain a great deal
of inherent instruction-level paral-
lelism.

® There is a great need for fast execu-
tion. (Logic simulators implemented
on von Neumann machines may take
days to run big simulations) Daisy's
machine runs approximately 100
times faster than most software
simulators

SUMMARY
NEC and Daisy have successfully used
data flow to solve two different com-
mercial problems in an appropriate
manner. Both problems are easily ex-
pressed using data-flow graphs. have
a great deal of instruction-level paral-
lelism. and require scalable execution
and high performance

As more companies discover prob-
lems for which data flow is the best
solution. the repertoire of practical
parallel algorithms using the data-flow
model will grow. m



